Asymptotic and Lyapunov stability of Poisson equilibria
نویسندگان
چکیده
This paper includes results centered around three topics, all of them related with the nonlinear stability of equilibria in Poisson dynamical systems. Firstly, we prove an energy-Casimir type sufficient condition for stability that uses functions that are not necessarily conserved by the flow and that takes into account certain asymptotically stable behavior that may occur in the Poisson category. This method is adapted to Poisson systems obtained via a reduction procedure and we show in examples that the kind of stability that we propose is appropriate when dealing with the stability of the equilibria of some constrained systems. Finally, we discuss two situations in which the use of continuous Casimir functions in stability studies is equivalent to the topological stability methods introduced by Patrick et al. [Paal02].
منابع مشابه
On Psi-conditional asymptotic stability of first order nonlinear matrix Lyapunov system
We provide necessary and sucient conditions for psi-conditional as-ymptotic stability of the solution of a linear matrix Lyapunov system and sucientconditions for psi -conditional asymptotic stability of the solution of a rst ordernon-linear matrix Lyapunov system X0 = A(t)X + XB(t) + F(t;X).
متن کاملPermanence and global asymptotic stability of a delayed predator-prey model with Hassell-Varley type functional response
Here, a predator-prey model with Hassell-Varley type functional responses is studied. Some sufficient conditions are obtained for the permanence and global asymptotic stability of the system by using comparison theorem and constructing a suitable Lyapunov functional. Moreover, an example is illustrated to verify the results by simulation.
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کاملLyapunov Functions for the Stability of a Class of Chemical Reaction Networks
A class of Lyapunov functions is introduced for reaction networks satisfying simple graphical conditions. The Lyapunov functions are piecewise linear and convex in terms of the reaction rates. The existence of such functions ensures the convergence of trajectories toward the equilibria, and guarantee the asymptotic stability of the equilibria with respect to their stoichiometric compatibility c...
متن کاملGlobal properties of a tuberculosis model with lost sight and multi-compartment of latents
A tuberculosis (TB) model with lost sight and multiple latent classes is considered and studied. We derive the basic reproduction ratio $mathcal R_0$. There is always a globally asymptotically stable equilibrium state. Depending on the value of $mathcal{R}_0$, this state can be either endemic ($mathcal{R}_0> 1$), or infection-free ($mathcal{R}_0leq 1$). The global asymptotic stability of ...
متن کامل